
THESIS

INTEGRATION OF A SUBMARINE INTO NPSNET

by

Daniel Keith Bacon Jr.

 September 1995
 Thesis Advisor: Michael J. Zyda
 Thesis Co-Advisors: Donald P. Brutzman

John S. Falby

Approved for public release; distribution is unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/ MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

5. FUNDING NUMBERS

i

Bacon, Daniel K., Jr.

September 1995 Master’s Thesis

Unclassified Unclassified ULUnclassified

INTEGRATION OF A SUBMARINE INTO NPSNET

Naval Postgraduate School
Monterey, CA 93943-5000

The views expressed in this thesis are those of the authors and do not reflect the official policy or position
of the Department of Defense or the United States Government.

Approved for public release; distribution is unlimited.

In the current version of NPSNET there are two problems that prevent users of this virtual environment from achieving
a realistic training experience. First, the motion of the vehicles is not built around realistic, physically-based models. In
particular, the motion of computer-generated sea-going vehicles is not based on the hydrodynamic models that reflect the motion
of actual ships moving through water. Second, vehicles in NPSNET are currently controlled by a single individual; they lack the
capability to be controlled by a team. This misrepresents the many actual military vehicles—submarines, tanks, helicopters, and
others—that must be controlled byseveral people working together.

The approach taken was to update the submersible vehicle class in NPSNET in two ways. A physically-based
hydrodynamic model was used to control the vehicle’s motion through the virtual world. In addition, a network communications
protocol was implemented to enable several remote individuals to control the same vehicle simultaneously.

The result of this work is the creation of a computer-generated submersible vehicle whose motion is determined by a
real-time hydrodynamic model so it moves through the virtual world according to physically-based models. This submersible is
also capable of being controlled by several remote individuals—effectively the same team members who would perform the job
in the actual vehicle. This ultimately results in a more realistic user experience as well as a more effective training tool for
NPSNET.

Submarine Trainner
Graphical Ocean Environment
Mutiplayer Control

ii

iii

Approved for public release; distribution is unlimited

INTEGRATION OF A SUBMARINE INTO NPSNET

Daniel Keith Bacon Jr.
Liutenant, United States Navy

B.S., United States Naval Academy, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1995

Author:

Daniel Keith Bacon Jr.

Approved by: _____________________________________
Michael J. Zyda, Thesis Advisor

Donald P. Brutzman, Thesis Co-Advisor

John S. Falby, Thesis Co-Advisor

Ted Lewis, Chairman,

Department of Computer Science

iv

v

ABSTRACT

In the current version of NPSNET there are two problems that prevent users of this

virtual environment from achieving a realistic training experience. First, the motion of the

vehicles is not built around realistic, physically-based models. In particular, the motion of

computer-generated sea-going vehicles is not based on the hydrodynamic models that

reflect the motion of actual ships moving through water. Second, vehicles in NPSNET are

currently controlled by a single individual; they lack the capability to be controlled by a

team. This misrepresents the many actual military vehicles—submarines, tanks,

helicopters, and others—that must be controlled byseveral people working together.

The approach taken was to update the submersible vehicle class in NPSNET in

two ways. A physically-based hydrodynamic model was used to control the vehicle’s

motion through the virtual world. In addition, a network communications protocol was

implemented to enable several remote individuals to control the same vehicle

simultaneously.

The result of this work is the creation of a computer-generated submersible vehicle

whose motion is determined by a real-time hydrodynamic model so it moves through the

virtual world according to physically-based models. This submersible is also capable of

being controlled by several remote individuals—effectively the same team members who

would perform the job in the actual vehicle. This ultimately results in a more realistic user

experience as well as a more effective training tool for NPSNET.

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. BACKGROUND .. 1

B. MOTIVATION... 2

1. Littoral Warfare and the Submarine ... 2

2. Teamwork vs. Individual Training ... 3

C. OBJECTIVES... 4

D. THESIS OUTLINE... 5

II. RELATED WORK ... 7

A. NPSNET ... 7

B. HYDRODYNAMICS... 8

C. MULTI-PLAYER CONTROL ... 10

D. GRAPHICAL REPRESENTATION OF AN OCEAN ENVIRONMENT.... 11

III. HYDRODYNAMIC MODEL.. 13

A. INTRODUCTION .. 13

B. BUOYANCY FUNCTION... 14

1. Buoyancy in General... 14

2. Function Based on Depth.. 15

3. Buoyancy Function Based on Ship's Angle.. 16

C. IMPLEMENTATION... 18

1. New Coefficients ... 18

2. Coordinate System.. 19

a. NPSNET ... 20

b. Hydrodynamics Model.. 20

c. Integration of two reference models 21

3. Inputs and Outputs .. 22

IV. MULTI-CONTROLLER PROTOCOL.. 23

viii

A. INTRODUCTION .. 23

B. SUBMARINE CONTROL PANELS... 24

1. Helm Control Panel... 24

2. Officer of the Deck (OOD) Control Panel.. 24

3. Weapons Officer Control Panel .. 26

C. COMMUNICATION PROTOCOL.. 28

V. GRAPHICAL REPRESENTATION OF OCEAN ENVIRONMENT................. 31

A. INTRODUCTION .. 31

B. GRAPHICAL UNDERSEA ENVIRONMENT... 32

C. OCEAN WAVE CARPET ... 34

VI. CONCLUSION AND RECOMMENDATIONS ... 39

A. RUNTIME PERFORMANCE.. 39

1. HYDRODYNAMICS MODEL.. 39

2. OCEAN WAVE CARPET ... 39

B. CONCLUSIONS... 40

C. LIMITATIONS.. 40

D. RECOMMENDATIONS FOR FUTURE WORK ... 40

DARPA SUBOFF MODEL COEFFICIENTS... 43

GENERIC SUBMARINE MODEL COEFFICIENTS.. 59

OBTAINING NPSNET SOURCE CODE.. 75

LIST OF REFERENCES.. 77

INITIAL DISTRIBUTION LIST ...79

ix

LIST OF FIGURES

 Figure 1. Virtual Anti Submarine Warfare Exercise ... 3

 Figure 2. NPS Autonomous Underwater Vehicle (AUV) ... 9

 Figure 3. Buoyancy related dimensions... 15

 Figure 4. Buoyancy versus keel depth for a rectangular box (solid line) and a cylinder or ellip-
soid (dotted line) ...16

 Figure 5. Moment arm created by change in CB position. .. 17

 Figure 6. Surface Length determination. ... 18

 Figure 7. NPSNET and Hydrodynamics Model coordinate conventions.............................. 21

 Figure 8. Helm Control Panel .. 25

 Figure 9. OOD Control Panel .. 27

 Figure 10. Weapons Officer Control Panel.. 29

 Figure 11. Undersea Environment ... 33

 Figure 12. Ocean Carpet (Wire frame) .. 34

 Figure 13. Ocean Carpet (Textured) .. 34

 Figure 14. Time Lapsed View from Periscope with Ocean Wave Carpet............................. 36

 Figure 15. Time Lapsed View from Periscope with Ocean Carpet 37

 Figure 16. Time Lapsed View from Periscope with Ocean Wave Carpet............................. 38

x

1

I. INTRODUCTION

A. BACKGROUND

In 1990, researchers and students began work on what was to become the Naval

Postgraduate School Networked Virtual Environment (NPSNET) at the Graphics and

Video Laboratory of the Department of Computer Science at the Naval Postgraduate

School in Monterey, California. NPSNET is an interactive distributed virtual simulation

of military maneuvers. NPSNET’s functionality and capabilities have improved with each

generation of software, networking technology and graphic capabilities. [Zyda94]

Currently, NPSNET is in its fourth major version (NPSNET-IV). It includes a suite

of complementary software applications such as network management tools and various

interfaces. NPSNET uses the Distributed Interactive Systems (DIS) Protocol version 2.0.3

for networked communications[Zeswitz93]

The software applications of NPSNET graphically simulate many actual military

activities, such as helicopter and tank warfare, fighter plane missions and foot soldier

operations. Each of these electronic simulators--whether a ship, a bomber, or soldier--can

run on separate workstations manufactured by Silicon Graphics Incorporated (SGI).

Individuals--ideally trainees--can operate these software applications without difficulty.

One of the elements that makes NPSNET unique is the fact that the applications are

networked and offer real-time interactions among the software applications. The DIS

protocol allows for real-time three-dimensional (3-D) contacts and exchanges among all

participants located at individual, geographically diverse workstations.

This thesis is an effort to add to the ongoing work that continually improves

NPSNET. Specifically, a submarine entity with physically-based hydrodynamic motion

and controls that can be run by three distant users simultaneously has been created.

2

B. MOTIVATION

Computer simulation provides the Navy with an inexpensive yet highly realistic

method of training. For proper training, various entities must be created to populate the

virtual world. Entities are such things as tanks, personnel carriers, surface ships, aircraft,

submarines and even individual combat soldiers.

1. Littoral Warfare and the Submarine

The US Navy is rethinking its war-fighting doctrine, shifting from the blue-water

Navy of the past to the littoral war fighters of the future [Dalton94]. A blue-water Navy

prepares to do battle in the open ocean against another navy that is also intent on fighting

at sea. Littoral warfare, however, takes place on the waterways close to land, the land close

to water, and the airspace above the sea-land border. Unfortunately, most of the U.S. Navy's

training has been for blue water conflict. As a result, Navy personnel in general know little

about the science of littoral warfare. One expensive way to rapidly increase awareness and

knowledge about littoral warfare is to stage large scale joint battles in various littoral

regions with all the appropriate branches of the U.S. armed forces. A more cost-effective

method of education is to simulate littoral warfare using a distributed virtual environment

such as NPSNET.

NPSNET makes it more practical to invite participants from various warfare

communities into cooperative training exercises. All can gain valuable experience and have

their contributions included from different parts of the country. Using NPSNET, a costly

antisubmarine warfare (ASW) exercise can be run without any of the combat participants

leaving home port Figure 1.[Schmidt93]

One important platform in littoral warfare is the submarine. A submarine has the

ability to move close to shore without revealing its presence. From this vantage point, a

submarine is an excellent vehicle for running reconnaissance missions, stealthily

transporting SEALs for penetration operations, laying minefields, or launching a rapid,

highly accurate strike using Tomahawk missiles.

3

2. Teamwork vs. Individual Training

Systems like NPSNET have been developed to help train groups of individuals,

each of whom controls a separate vehicle. However, to operate many vehicles currently

used by the armed forces require a group effort. Several individuals must work together to

correctly control and employ the vehicle. This is true for tanks, bomber aircraft, ships and

submarines.

Today, a handful of simulators let a group control the same entity, but NPSNET is

not one of them [Sullivan93]. Cooperation is a critical part of the training process, as team

members must work together. Prior to this thesis, NPSNET did not have the capability to

let more than one person participate in the control of a vehicle. Since NPSNET is already

Figure 1: Virtual Anti Submarine Warfare Exercise

4

a distributed system, it is possible to add the technology needed to allow for various

individuals to participate in the control of a single entity from multiple locations.

C. OBJECTIVES

The objective of this research is to design an accurate submarine vehicle and

incorporate it into NPSNET-IV. To achieve this objective, the submarine requires the

following capabilities:

• The motion must be physically based, both underwater and on the surface. This
allows the vehicle to be used as a trainer for junior officers. They can "drive" the
virtual ship and get a feel for how a submarine would actually respond.[Hearn93]
[Nobles95]

• The submarine must be operable by one or more individuals at the same time. An
actual submarine is not an individually controlled machine, it requires teamwork to
employ one effectively. If the virtual submarine is to be used for training, it should
train a team, not simply an individual. Additionally, the controls must remain
relatively simple so that a single person is capable of operating the submarine if no
others are available.

• The weapons of the submarine must look and behave similarly to the normal
weapons of a submarine, (e.g. the Mk 48 or ADCAP torpedoes, and the Harpoon and
Tomahawk missiles.) Though the weapons should resemble the actual ones, they
ought not be modeled exactly after the actual weapons, since this would lead to
classification problems.

• Since NPSNET is distributed openly, all of the source code is unclassified. The
submersible hydrodynamics coefficents must be unclassified, yet the model must have
the capacity to quickly change to classified coefficients. This is accomplished through
the use of paramenter files that are used to initialize the hydrodynamic model.
Classified coefficient files may be easily substituted wtih no other changes tothe code.

5

D. THESIS OUTLINE

The previous sections of this chapter state the objectives and motivation for

providing a submarine vehicle for NPSNET. Chapter II provides background of the

NPSNET project including purpose, history, general program design and current research.

Chapter III discusses the design considerations of the hydrodynamic model that will control

the submarine, including general hydrodynamic theory, survey of earlier work, derivation

of a real-time buoyancy model, generation of representative unclassified hydrodynamic

coefficients, and computational complexity considerations. Chapter IV describes the

requirements and implementation of a protocol that allows more that one person to control

a single vehicle. Chapter VI covers the graphical ocean environmet required for the

submarine to operate in the virtual world of NPSNET. Conclusions reached in this

research, including run-time performance, limitations of the submarine and suggested

future work, are in Chapters VII and VIII.

6

7

II. RELATED WORK

A. NPSNET

Students in the Naval Postgraduate School's Department of Computer Science

began a project known as the Naval Postgraduate School Networked Virtual Environment

(NPSNET) in 1990. NPSNET was written as a real-time, networked software package

running on commercial off-the-shelf workstations, i.e. the Silicon Graphics Incorporated

(SGI) IRIS family of computers. NPSNET was originally envisioned as a low-cost,

government owned, workstation-based visual simulator [Zyda94]. NPSNET-IV.8.2 is the

current version of the evolving NPSNET simulation system. It uses the Distributed

Interactive System (DIS) Protocol version 2.0.3 for networked communications, and

follows the object-oriented programming paradigm for defining and controlling remote and

local DIS-based entities and munitions [Barham94].

DIS defines twenty-seven standard Protocol Data Units (PDUs), or information

packets, for sharing information between simulators. Currently, NPSNET uses only three

of the PDUs: Entity State, Fire, and Detonation. These three PDUs are the only ones

required for basic interactive simulations. The other twenty four PDUs are relevant mainly

in large, high-fidelity military exercises, or are not critical for the virtual world research

currently being conducted at the Naval Postgraduate School[Barham94]. A notable

deficiency is failure to implement the Message PDU [Brutzman94]. Currently NPSNET

has implemented an Interface Data Unit (IDU) along with a IDU manager. IDU’s can be

specified prior to runtime, and used to communicate entity control data across the network.

Networked Virtual World simulation systems sharing the same Virtual

Environment must have the capability of sharing information about the virtual

environment, transmitting the events the local simulator causes and receiving events caused

by remote entities in the virtual environment. This information includes such 3-D data as

entity position and orientation (collectively referred to as posture), weapons firing, tracking

and detonations. In a DIS virtual environment, each simulator maintains its own world

8

database copy of the objects in the world (e.g. terrain, buildings, trees, etc.) and is

responsible for managing the local copy by keeping it up to date as the simulation

progresses.[Barham94]

NPSNET IV uses a Euclidean coordinate system to specify an entity’s posture in

the virtual world. As stated, a posture is composed of a position specification, in this case

(x, y, z) and a orientation specification (heading, pitch and roll). These three axes,

combined with orientation displacements, enable an entity to obtain six degrees of freedom

for motion. Linear and angular velocities and acceleration can also can be passed via PDUs

to enable remote users to dead reckon entities between PDUs. Dead reckoning is defined

as the process of calculating a new posture for an entity with no additional inputs. This is

done by taking the initial posture and adding to it displacements that are equal to the

respective velocity multiplied by the time since the initial posture was received.

In order to keep track of remote or networked entities, the local simulator must have

some type of entity list containing entity identification, posture, geometry model data and

other pertinent information. One way of reducing network traffic in a DIS simulation is to

require the local simulation system to dead reckon each remote entity's position between

the intermittent receptions of actual Entity State PDUs. This dead reckoning implies that

the data concerning remote entities maintained in the entity list is lower resolution

compared to the higher resolution knowledge of the locally-controlled entity.

B. HYDRODYNAMICS

There have been a few attempts to create submersible vehicles in virtual worlds.

The first one developed at the Naval Postgraduate School took an NPS Object File Format

(NPSOFF) submarine object and animated it under the constraints of accurate

hydrodynamic laws of motion [Juerwicz90]. Unfortunately the physically-based modeling

representation of the dynamics in this project is hard coded for one specific underwater

vehicle. Adding or adjusting the submarine dynamics is not a simple task, and the

9

integration of a physically different submarine model requires software maintenance by a

knowledgeable programmer [Zyda91] and rederivation of equations of motion by a

mechanical engineer. Because of these problems, this work is unsuitable for general use.

A Deep Submergence Rescue Vehicle (DSRV) was also modeled using a simple

Newtonian force-based paradigm [Zehner93]. As before, the model used was not general

enough to allow for directly changing vehicle characteristics, such as length, width and

buoyancy. In addition, the networking attempted used only simplistic stubs to provide a

proof of concept. Benefits of this model included an object-oriented structure for physically

based modeling.

In 1994, a rigorous general model for submerged vehicle hydrodynamics was

created that was computationally suitable for real-time simulation [Brutzman94]. This

model was developed to support computer simulation and testing of the NPS Autonomous

Underwater Vehicle (NPS AUV) project Figure 2. This is the first publicly available

hydrodynamic model that is based on standardized equations of motion and operates in

real-time (10 Hz or faster control loop.) Another advantage of this model is its object

oriented design, which allows programmers to implement and adjust for various types of

submarines.

The initial implementation of this model is that it assumed the submarine remained

submerged at all times, hence the buoyancy of the submarine remained neutral. Based on

Figure 2: NPS Autonomous Underwater Vehicle (AUV)

10

results reported in this thesis, the model now allows for real-time changes in a submarine's

buoyancy, and includes a function for buoyancy versus depth. This functionality allows the

AUV to surface and act much like a surface ship. This hydrodynamics model may

conceivably be used to provide even more realistic training for other ship simulators

[Hearn93][Nobles95].

C. MULTI-PLAYER CONTROL

There are many different types of vehicle simulators in existence. Some simulators

have the capability to train small groups of people to control a single vehicle, such as airline

cockpit simulators that train a crew consisting of a pilot, co-pilot, and navigator together.

Other simulators allow individuals to each control one vehicle, network the individual

vehicles together and train as a group. No system exists however, that allows individuals to

work as a small group controlling a single vehicle while at the same time remaining

networked at different locations. NPSNET provides the required basic networking

protocols and allows for rapid implementation of physically based models to be

incorporated into the virtual environment. NPSNET and the DIS protocol, however,

currently do not provide a means for a single vehicle to be controlled by more than one

operator. Although the DIS protocol might be utilized to achieve this functionality using

Message PDUs, such work has not been done.

A step in this direction for NPSNET was thesis work that created a remote panel

from which a single individual user could control a vehicle [McMahan94]. The protocol

used the basic NPSNET architecture coupled with a DIS-like protocol. This allowed a

remote workstation to send a message containing the control information for one vehicle to

another workstation (or host) that was simultaneously running the NPSNET simulation.

The host workstation sends back to the remote controller updates of the vehicle's current

posture, speed, sensor information, etc. However, this protocol does not have any means to

direct these "control" and "information" packets to more than one machine. Because of this,

11

only one remote site can be operated at a time. Also, there is no hierarchy for means of

control. If more than one remote station tries to send a "control" packet to the host, a race

condition can occur where the host does not know which packet is the correct one to use.

Multi-player control requires the ability to address "control" and "information" packets. It

also requires a control protocol which prevents race conditions with the host workstation.

Finally, authentication of control packets must be considered in order to prevent

unauthorized interference.

D. GRAPHICAL REPRESENTATION OF AN OCEAN ENVIRONMENT

Providing a more realistic visual ocean is a crucial part of making an accurate

submarine model. Current submarines use their periscopes infrequently, usually relying on

passive sonar to determine locations of contacts. Because of this, officers aboard naval

submarines get little practice looking through periscopes. The periscope, however, is one

of the most vital sensors for a submarine. It allows reconnaissance of coast lines, obtaining

visual navigation fixes, and provide rapid solutions to surface Target Motion Analysis

(TMA) problems. Most shore-based periscope trainers use unrealistic flat oceans and toy

contact models, blocking out the view with a single blue polygon occasionally to simulate

actual ocean waves. Incorporating a realistic open-ocean environment adds more realism,

thus immersing the individual further in the Virtual Environment, increasing the user's

sense of presence and adding to the training value [Covington94].

The current open-ocean theater implemented for NPSNET does not allow for use in

a virtual world representing a littoral region [Covington94]. One reason for this is the

intersection of nonliving polygons (representing land) with moving polygons (representing

wave motion) is difficult to calculate. Another problem with representing large bodies of

water is that it is too computationally expensive to model waves across the entire ocean.

This is an excellent area for future work.

12

13

III. HYDRODYNAMIC MODEL

A. INTRODUCTION

A physically based hydrodynamics model is a set of mathematical equations that

simulates the combined forces on a submerged rigid body. This model must be able to

update a vehicle’s posture, velocities and accelerations in the six degrees of freedom as

discussed in the previous chapter. These updates must account for the complex physics of

motion through water.

The effects of forces and moments can all be cross-coupled between vertical,
lateral and horizontal directions. The effects of the surrounding environment are
relatively large and significant, so much so that the adjacent water tends to be
accelerated along with the vehicle and can be thought of as an "added mass." Together
these challenges make underwater vehicle physical response, guidance and control an
extremely difficult dynamics problem. [Brutzman 94]

Because of these challenges, the underwater hydrodynamics problem is too

complex for a meaningful kinematics (velocities-only) solution [Healey93]. A more

appropriate solution is to model all forces acting on the submersible and calculate the

corresponding accelerations. Until this recent result, no single hydrodynamic model was

general or robust enough to provide accurate information about all aspects of

hydrodynamic motion while at the same time providing the means to vary pertinent inputs

into the model. Furthermore, the ability to change the hydrodynamics coefficients allows

one to model any form of submersible.

Reflecting the complex nature of underwater hydrodynamics, hydrodynamics

models use more than one hundred pertinent coefficients. These coefficients can be

obtained through costly analysis along with tow tank modeling. Most of the coefficients

however, are of negligible importance to the physical behavior of a large underwater

vehicle since they deal with second and third order effects.

14

The NPS AUV hydrodynamics model is rigorous, while enabling the programmer

to easily change coefficients and dimensions of the submersible being modeled. This model

provides six degrees of freedom and real-time performance in computer-based visual

simulation [Brutzman94].

B. BUOYANCY FUNCTION

1. Buoyancy in General

As currently implemented, submersibles in the hydrodynamics model are

considered neutrally buoyant. That is to say, the weight of the water which the submersible

displaces is equal to the weight of the submersible itself. To enable a submarine to have a

functioning ballasting system and to enable surface operations, the hydrodynamics model

must be extended further.

Archimedes' principle states that a submerged body is subject to a buoyancy force

that is equal to the weight of the fluid displaced by the volume of that body. The point at

which all forces producing the buoyant effect may be considered to act is the center of

buoyancy (CB) and is the volumetric center of the fluid displaced. For a stable floating

object, the center of buoyancy is directly above the object's center of gravity (CG). The

center of gravity is, for any three-dimensional body, the point where the net force related

to the body's weight, or mass, may be considered to be located. Failure to put the center of

buoyancy over the center of gravity results in static instability and a tendency to invert. To

determine a vehicle's buoyant force we use the following formula:

Where: is the density of water
g is gravity

 is the volumetric displacement at a given time

This formula determines how much water volume a vehicle displaces at a given

time and then multiplies this integration by the density of water and gravity. Although this

Buoyancy ρg Vd∫∫∫=

ρ

Vd∫∫∫

15

is the general solution for buoyancy, it involves a triple integral. This is deemed too

computationally expensive for real-time use, since a submersible is not only an irregular

shape, but the volume displaced changes rapidly as it moves up and down at the water's

surface. A simple solution to this problem is to use a shape with an easily calculable volume

that resembles the submersible. Although this is not precisely accurate, it models the major

portions of buoyancy and is rapid enough for real-time application. Furthermore, such a

simplification is correct at bounding conditions corresponding to neutral buoyancy. Thus

any inaccuracies are only due to transient approximations. These approximations are

insignificant compared to the variability already present due to surface wave action.

2. Function Based on Depth

Let us consider a rectangle as a simple vehicle with length L, height H, and width

W, as in Figure 3. When the vehicle is not in the water, the vehicle has no buoyant force.

When the vehicle is fully submerged, the buoyant force is equal to the volume of the vehicle

L * H * W. With motion only in the vertical direction, the vehicle's buoyancy can quickly

be determined by calculating the volume submerged.

Volume = Length x Width x (Height-Z)

Here, Z is the amount of "freeboard" or distance from the water line to the level deck of the

vehicle.

As seen in Figure 4, when the vehicle is not in the water at all, buoyant force is equal

to zero. As the volume of the vehicle enters the water the buoyant force increases until the

entire volume is submerged. For a surface ship with a given mass, if the buoyant force is

L

H

W

Z

Figure 3: Buoyancy related dimensions.

16

less than its mass, it will sink into the water. Likewise, if the surface ship is too deep in the

water, causing the buoyant force to be larger than the mass of the surface ship, it will move

towards the surface of the water. This simple example demonstrates that a ship will tend to

move to a point at which the surface ship's mass is equal to the buoyant force.

A submarine is not a rectangle; it more closely resembles a cylinder or ellipsoid. Its

buoyancy function is bowed in the beginning due to less volume entering the water, grows

steepest when the widest part of the ship is entering, and again tapers off as the top of the

cylinder is reached. Figure 4 also shows that the change in buoyancy when using a cylinder

versus a rectangle is a physically small affect that will only effect transient response, not

bounding conditions or steady-state behavior.

3. Buoyancy Function Based on Ship's Angle

The previous discussion was based on a vehicle that changed displacement only in

the vertical direction and did not consider pitch or roll. Since a submarine is almost

perfectly symmetrical along the longitudinal axis, roll does not play a significant part in

determining buoyancy. Such is not the case for a submersible's pitch. Submersibles have

the capability to achieve large pitch angles of up to forty-five degrees while submerged.

When the submersible is near the surface, these pitch angles can have a major impact on

the vehicle's buoyancy in two ways. First and most obvious, more of the submersible can

L H W××

0

0 H

Z

Buoyancy (lbm or kg)

Figure 4: Buoyancy versus keel depth for a rectangular box (solid line) and a
cylinder or ellipsoid (dotted line)

17

be moved out of the water. This of course tends to reduce the ship's overall buoyant force.

The second and more significant impact is the change in the center of buoyancy. As stated,

the center of buoyancy is the location where the buoyant forces act upon the vessel and is

based on the location of the center of the displaced water. When a large portion of a

submersible is out of the water, the volumetric location of the center of buoyancy moves to

the center of the volume still submerged. If the bow is protruding the center of buoyancy

will move aft, and if the stern is protruding CB will move forward.

Because of this shift in the center of buoyancy, a moment arm is created with the

center of gravity. With the buoyant force pushing up from astern and the mass of the ship

pulling down at the longitudinal center, a submersible tends to pitch down Figure 5.

 In general, the distance that the center of buoyancy shifts is related to the volume

of the submersible above the water. Volume above the water's surface can be simply

estimated using only the pitch angle and centeline distance above the water. The centerline

distance above water is also quickly calculated using only depth and pitch angle of a vehicle

Figure 6.

CG
CB

original CB

Righting Moment

Figure 5: Moment arm created by change in CB position.

18

The centerline distance (CD) above the water is thus calculated with the following

formula:

CD above water = max((Total Length / 2) - Surface Length)

Surface Length = Depth / sin

Furthermore, we must constrain this value to avoid inappropriate calculations when

submerged.

-Total Length / 2 < CD < Total Length / 2

Combining the effects based on depth and pitch, a realistic representation of a

submersible's buoyancy is obtained. Although this is a simplified buoyancy function, it

demonstrates that the hydrodynamics model has the capability to adequately compute

buoyancy changes under real-time restrictions.

C. IMPLEMENTATION

1. New Coefficients

As stated earlier, numerous coefficients are required for a hydrodynamic model to

determine correct solutions. Hydrodynamic coefficients have been normalized with respect

to vehicle length L, and thus are dimensionless quantities. These coefficients help describe

Depth Surface Length

Surface Length
(for down angles)

(for up angles)
Z

positiveθ upward pitch angle=

negativeθ downward pitch angle=

Figure 6: Surface Length determination.

θ

19

the relationships between the various velocities and acceleration of a submerged vehicle to

the hydrodynamic effects that vehicle experiences.

Other important inputs to a hydrodynamic model are the measurements that define

the physical layout of the submersible being modeled. Measurements include such things

as length, mass, volume, cross-sectional areas of the submersible along with precise

locations of propellers, planes and rudders. Currently the hydrodynamics model uses

coefficients designed to correlate with the NPS Autonomous Underwater Vehicle (AUV).

The AUV is an actual submersible six feet long and weighing 387 pounds. Unlike other

hydrodynamic models, the coefficients and measurements in this model are located in a

separate computer file. This allows for quick and easy changes by programmers.

To create a submarine in the virtual world of NPSNET, new coefficients were

needed. To ensure this thesis remains unclassified, all coefficients and other measurements

were obtained from unclassified documents. Of course, if the improved accuracy of

classified coefficients were required in the future, it is a simple matter to substitute them.

In the first iteration, the coefficients and measurements were obtained from the David

Taylor Research Center, Ship Hydrodynamics Department, Departmental Report DTRC/

SHD-1298-08 September 1990[Roddy90]. This report describes a 14.292 foot, 1556 pound

general submarine form. A stable set of coefficients and measurements was obtained using

this report and a series of validating laboratory missions. Then the general submarine

model was ratioed up to a 360-foot, 6,900-ton submarine. This is a simplistic

approximation corresponding to a Los Angeles class submarine[Sharpe93]. Both sets of

coefficients and pertinent measurements are located in Appendices A and B, respectively.

2. Coordinate System

To uniquely describe motion in a three dimensional world, a standard reference

system must be established. Unfortunately, there is no universal frame of reference

convention. Many related disciplines use conventions that are different from one another.

This thesis relies on two conflicting references. NPSNET uses a different frame of

20

reference than the hydrodynamic model. These discrepancies must be resolved. The

following describes the two frames of reference and how they were resolved.

a. NPSNET

NPSNET uses the convention of a right-handed three-dimension Euclidean

space. The horizontal axis is the X axis, positive from left to right. The vertical axis is the

Z axis, positive from bottom to top. The Y axis is perpendicular to the X and Z axis, positive

from near to far. In global coordinate space, the Y axis is considered to point to a Northern

compass heading, positive X pointing to the East, and positive Z indicating Height above

mean sea level.

As is standard in most world coordinate systems, counter-clockwise

rotations about the X, Y, and Z axes define the positive Euler angles phi, theta and psi

() respectively. These are commonly know as pitch, roll and heading. A vehicle's

posturecan be uniquely described given x, y, z coordinates along with Euler

angles.

b. Hydrodynamics Model

The hydrodynamic model also uses a right handed, three-dimensional

Euclidean space but this coordinate system is based on the Naval Engineering standard.

The horizontal axis is now the Y axis, positive from left to right, pointing to the East. The

vertical axis is still the Z axis, but now positive has flipped, going from top to bottom. This

is because the Z axis is now a measurement of depth. The X axis is now perpendicular to

the Y and Z axis, positive from near to far, along the vehicle longitudinal axis, pointing

towards North.

With a new coordinate system, roll, pitch and heading are defined again

using right-handed counter-clockwise rotations about the three axis. Roll is provided from

the X axis, pitch from the Y axis and heading from the Z axis.

Φ,θ,Ψ

Φ,θ,Ψ

21

c. Integration of two reference models

Reconciling the differing reference conventions between the

hydrodynamics model and NPSNET is straight forward when both conventions are viewed

side by side Figure 7. The actual conversions are done within the local entity Update

function of NPSNET.

Note that although roll and pitch map directly, heading is reversed since the

Z axis has been inverted. Appropriate sign transformations for heading , depth Z and east

coordinate Y are used to make the two references compatible.

z-axis = Height

x-axis

y-axis = North

z-axis = Depth

x-axis = North

y-axis = East

psi Ψ

thetaθ

phi Φ

yaw Euler angle

pitch Euler angle

roll Euler angle

= East

NPSNET HYDRODYNAMICS MODEL

psi Ψ

thetaθ

phi Φ

pitch Euler angle

roll Euler angle

yaw Euler angle

Figure 7: NPSNET and Hydrodynamics Model coordinate conventions

Ψ

22

3. Inputs and Outputs

All vehicles must be provided some means of control as they operate in their native

environment. Typically a submerged vehicle is outfitted with a propeller of some kind

along with a combination of control planes. Control over weight and buoyancy is typically

maintained through the use of a ballast and trim system.

Although propellers and thrusters may be positioned and oriented in various ways

on a submersible, for simplicity the submersible modeled in this thesis has one main

propeller. This main propeller is located aft along the centerline of the submersible and

provides forward and aft thrust.

The main purpose of a control surface is to induce a moment on the vehicle to cause

it to rotate to a desired angle. Control planes are usually aligned in either the horizontal or

vertical direction and rotate around their axis of orientation. A rudder is a plane aligned in

the vertical direction and is used to control the submersible's heading. Stern and bow planes

are aligned in a horizontal direction and are used to control the submersible's pitch. When

neutrally buoyant and moving forward, pitch control is via the bow and stern planes

allowing the submersible to change depth.

23

IV. MULTI-CONTROLLER PROTOCOL

A. INTRODUCTION

As described in NPSNET-IV: An Object-Oriented Interface for a Three-

Dimensional Virtual World, [McMahan94] a remote control panel for NPSNET was

developed that has the ability to control a single NPSNET entity across a network. This is

done using unique data structures passed over network socket connections between the

machine running the remote panel application and the NPSNET host machine. The

information sent between the two platforms allows for a loose coupling between the

interface application and NPSNET. A benefit of this system is that changes can be made

quickly to one application with few effects on the other [McMahan94].

Although successful as a remote communication application, McMahan's work was

built with the paradigm of single user controlling a single vehicle. In order for McMahan’s

work to be useful in a multiuser application, it needs to be expanded to allow several users

to control a single vehicle.

One problem encountered while extending McMahan's work directly into a multi-

user control protocol was dealing with the "race conditions" that can ensue. A "race

condition" results when two or more processes are reading or writing some shared data and

the final result depends on the precise order of the processes executed. With any multiuser

control protocol, race condition situations must be addressed. This problem becomes more

apparent when the remote control application enables an individual user to assume the role

of any of the possible control positions. The basic issue is that a remote control application

must be prevented from sending erroneous control information to the main application,

while at the same time it must be constantly up-to-date with the other remote control

applications that are running.

24

B. SUBMARINE CONTROL PANELS

In this thesis, the remote control application covers three user roles in the effort to

operate a submarine—specifically a Helmsman, an Officer of the Deck (OOD), and a

Weapons Officer. Each user controls different parts of the on-screen panel, which are

cooperative elements of the same application. In addition, each user has the ability to

change roles at any time during the simulation. The sub control application is flexible

enough to support three users, while at the same time can easily be controlled by one

individual. General layout and design of the three panels are based on making the controls

intuitive while retaining functionality. [Schneiderman92]

1. Helm Control Panel

The Helmsmen's responsibility in the operation of a submarine is to steer the

submarine so that it remains on the depth and course that is ordered by the OOD. The

Helmsmen's Panel therefore contains various indicators to tell him or her the current depth,

course, and speed of the submarine, in both digital and analog readouts Figure 8. Along

with these readouts are indicators that show the orientation of the various control surfaces

of the submarine, rudder, fairwater planes and stern planes. Actual control of these planes

is accomplished using a joystick or keyboard inputs. In addition to steering the submarine,

the Helmsman relays the ordered speed to the engine room through the use of the engine

order telegraph. The submarine's speed can be set using the engine order telegraph, throttle

control or keyboard input. On a normal submarine, the OOD makes his orders to the

Helmsmen verbally. Due to the distributed nature of this application verbal orders may not

be possible because the OOD and the Helmsman may be located a great distance apart. The

ordered course, depth and speed display on the far left side of the Helmsmen panel fulfills

this communication requirement.

2. Officer of the Deck (OOD) Control Panel

The OOD's main responsibility is setting a path for the submarine to maneuver

through the virtual world. To do this, the OOD control panel must have the ability to give

25

F
ig

ur
e

8:
 H

el
m

 C
on

tr
ol

 P
an

el

26

orders and view the surrounding environment Figure 9. Orders are relayed to the

Helmsmen through the use of the panel's ordered course, depth and speed areas. These

orders can be monitored using the actual course, depth, and speed display. In addition to

these orders the OOD has the Main Ballast Tanks (MBTs) controls.

The MBTs are empty while the submarine is on the surface, providing positive

buoyancy. To submerge in an actual submarine, the MBTs vents, located at the top of the

tanks, let water fill the MBTs from open grates in the bottom of the tanks. This in turn

causes the submarine to lose its positive buoyancy and the submarine submerges. To

surface, this process is reversed. The MBTs vents are shut and air is injected into the tanks

using the Emergency Main Ballast Tank (EMBT) Blow system, forcing the water out of the

open grates in the bottom of the tanks. In this virtual submarine, controls for both the MBTs

vents and EMBT Blow system are incorporated into the OOD control panel.

To allow the OOD to view the environment, periscope controls are provided. These

allow the OOD to raise and lower the periscope and change the elevation as well as the

azimuth of the viewing direction. The periscope view also provides the ability to determine

a bearing and range to an object that is being viewed by placing the object in the cross hairs

of the periscope and then depressing the mark button. Bearing and range information is then

displayed below the viewing controls.

3. Weapons Officer Control Panel

The Weapons Officer is responsible for the launching of weapons, in this case

unclassified versions of MK 48 or ADCAP torpedoes and Tomahawk cruise missiles. To

carry out these functions, the Weapons Officer control panel has one area for torpedo

controls and one for cruise missile controls Figure 10. Torpedoes are used to conduct Anti

Submarine Warfare (ASW) or Anti Surface Warfare (ASUW). Tomahawk cruise missiles

are used to conduct precision strikes against land targets.

The torpedo controls enable the Weapons Officer to select a tube to be fired, set a

course for the torpedo to follow, then shoot the torpedo. Unlike torpedoes, the Tomahawk

27

F
ig

ur
e

9:
 O

O
D

 C
on

tr
ol

 P
an

el

28

missiles are preloaded with flight paths and therefore no course needs to be set for these

missiles.

C. COMMUNICATION PROTOCOL

Revising the code to allow for multi-user control required labeling each of the

control data packets sent from the remote control applications to the NPSNET host

application. The labels identify the role of the user who generated the input. These labels

allow the NPSNET application to parse out the appropriate information for a given label

while ignoring the other data fields. For example, when a control data packet labeled

“Weapons Officer” is transmitted to the NPSNET application via the socket connection,

only the positions of the dials and inputs under the direct authority of the Weapons Officer

will be registered and updated, such as torpedo tube selected, torpedo course and shoot

commands. The controls not under the authority of the Weapons Officer, such as

Helmsmen and OOD functions, will not be registered by NPSNET therefore eliminating

the need for direct communications between remote control applications.

Once the NPSNET application has registered the useful information from an

incoming control data packet, the application creates an updated master communication

packet. This master communication packet contains the most current setting for all three

control positions. NPSNET then sends this master communication packet to all of the

remote controllers, so information is updated on the three control panels on all remote

applications. That way, all control panels on each remote application stay in sync, and the

numbers and settings displayed remain constant until the appropriate user intentionally

revises them.

29

F
ig

ur
e

10
: W

ea
po

ns
 O

ffi
ce

r
C

on
tr

ol
 P

an
el

30

31

V. GRAPHICAL REPRESENTATION OF OCEAN ENVIRONMENT

A. INTRODUCTION

Databases used in virtual worlds can be broken down into two major categories: the

two-dimensional plane and the three-dimensional objects. The two-dimensional plane can

be thought of as a table top or playing field and usually represents the surface of the land

or large bodies of water. This plane defines the boundaries for the x and y axis of the virtual

world. The next major category is composed of three-dimensional objects, buildings,

vehicles, mountains, bridges and foliage that populate the virtual world. These objects can

be thought of as being placed onto the initial two-dimensional plane. Because of this

paradigm, the virtual world usually only extends into the positive third-dimension, namely

height above the two-dimensional plane. One flaw with this system is that whenever a user

moves below the flat two-dimensional plane of the virtual world, for example when an

entity dives below the surface of the ocean, there is nothing there. It appears that the virtual

world is suspending in air, allowing the user to quickly determine the unreality of the

situation. Developing a simple means of creating an entire environment underneath this

plane was required for this project, since submarines operate in this previously

undeveloped region of the virtual world.

Limitations on the number of polygons per second a computers can render is

diminishing with introduction of faster processors, specialized graphics generators and

larger graphics pipelines. Computer graphics still have limits to their capabilities

nevertheless. To ensure rapid frame rates are maintained to provide smooth realistic

motion, polygon conservation when creating an environment is essential. When developing

virtual worlds, programmers attempt to render as few polygons as necessary to achieve a

graphically believable environment. One way of accomplishing this is using only a few

large polygons in large flat areas of the virtual world, such as fields and oceans.

32

Challenges occur when these large areas need to appear as if in motion. Since it is

impossible to bend a polygon, these areas must be created with several polygons, so that

the surface looks to remain smooth throughout its "movement."

Programmers use textures as another way of minimizing the number of polygons in

a virtual world. Textures are pictures that can be applied to a polygon, giving it a much

more complex appearance. A simple example of this is a cube with textures applied to each

surface that are pictures of the outside of a house. Instead of using individual polygons to

model each door, window or brick, this texture allows a developer to place that rich,

complex image in the virtual world using only five polygons (four walls and a roof). In

NPSNET, this technique has been useful in creating buildings, trees and a realistic-looking

ocean surface. Previously only a random noise texture was placed on the blue polygons that

represent the ocean, thus giving the effect of ripples and waves as viewed from a distance.

Unfortunately, as the viewer gets closer to these textured polygons, the optical illusion is

destroyed and the "flatness" of the ocean becomes apparent.

B. GRAPHICAL UNDERSEA ENVIRONMENT

To create an environment below the two-dimension playing field of the current

virtual environment, two steps were taken. First, a new two-dimensional playing field was

created. This new field is lower than the original one, representing not the ocean surface

but the ocean bottom. Second, the space between these two planes was filled with a new

graphical environment, namely the ocean water Figure 11.

The ocean bottom was created by taking a copy of the ocean surface polygons and

adjusting all vertices along the negative z axis to an appropriate depth. Since the original

ocean surface is represented by a group of flat polygons with a constant depth, the ocean

bottom, in turn, now has a constant depth. The main purpose for creating an ocean bottom

was to give the user a visual frame of reference when driving the submarine underwater.

Without this frame of reference, up, down, left and right can quickly become confused. A

33

simple shoaling ocean bottom was deemed unimportant for the simulation and might make

the ocean bottom more difficult to discern as a visual reference. Future work will

undoubtedly apply bathymetric data to contour the ocean bottom.

To create the effect of water, the Performer fog function was used. This function

allows the programmer to specify the range, color and level of the fog, which is then applied

to the scene. In this case, the fog is colored light blue with visual perception further

impaired as depth increases. This fog is generated whenever the height z axis is below the

surface of the water. An added benefit of using this fog is just as vision is difficult under

real water, vision in this virtual world also is difficult. This also supports the argument that

depicting a shoaling ocean bottom is not significant.

Figure 11: Undersea Environment

34

C. OCEAN WAVE CARPET

Although submarines mainly remain submerged, the rendering of wave motion is

essential to provide realism while the submarine is near the surface with its periscope in

use. Two principles are critical when considering how to create surface wave motion. First,

the closer objects are, the more realistic they must look. Second, making the entire ocean

out of moving polygons can easily become too complex to be practical or possible. Thus,

a moving "ocean carpet" was developed. This carpet consists of 824 polygons suspended

one meter above the "flat" ocean polygons Figure 12. The ocean carpet is colored and

textured to look the same as the rest of the distant-ocean polygonsFigure 13. The ocean

Figure 12: Ocean Carpet (Wire frame)

Figure 13: Ocean Carpet (Textured)

35

carpet polygons are animated so that they appear to move in a wave-like fashion.This

animation takes advantage of the Performer graphics pipeline, using an array of three sets

of vertices of the ocean carpet. Experimentation using only one set of vertices in the

animation process was initially adequate, however three sets provided for truly life-like

smoothness of motion.

This carpet is positioned in the x and y axis and rotated around the z axis

corresponding with the heading of the local entity. The ocean carpet therefore, follows the

vehicle wherever it goes in the virtual undersea world while always remaining suspended

one meter above the normal ocean polygons. Because the ocean carpet and the rest of the

ocean are colored and textured identically, the edge of the carpet cannot be discerned from

the user's vantage point. Similarity of texturing and color, coupled with the fact that the

original texture has always been a good representation of waves from a distance, provides

views from periscopes that are extremely realistic Figure 14 Figure 15 Figure 16.

This ocean carpet is not represented for any entities other thant the locally generated

one. This is because wave motion is only apparent close up, and in general most entities are

so far away that the generation of waves around them becomes visually insignificant.

36

Figure 14: Time Lapsed View from Periscope with Ocean Wave Carpet

37

Figure 15: Time Lapsed View from Periscope with Ocean Carpet

38

Figure 16: Time Lapsed View from Periscope with Ocean Wave Carpet

39

VI. CONCLUSION AND RECOMMENDATIONS

A. RUNTIME PERFORMANCE

1. HYDRODYNAMICS MODEL

Physically based dynamic modeling, when properly parallelized, is less processor-

intensive than graphics rendering [Juerwicz90][Zyda91]. In this application of a physical

model, the hydrodynamic model used to control the submersible's motion was not

parallelized. This led to no measurable degradation of performance in frame rates,

maintaining approximately 30 frames per second. This experimental result confirms that

the NPS AUV hydrodynamics model is suitable for real-time applications. Along with

adequate frame rates, the hydrodynamic model, utilizing the new sets of coefficients,

provided smooth accurate motion. Because of this motion, the overall experience of using

the submersible is greatly enhanced.

2. OCEAN WAVE CARPET

Whenever more polygons are added to a scene, graphical performance may decline.

Since the ocean carpet only adds 824 new polygons, there is not a significant performance

decline in the average NPSNET scene. Along with the addition of more polygons requiring

rendering, new positions of the various vertices for these polygons must be calculated for

each frame. As stated in chapter V, this has been parallelized, taking advantage of the

Performer pipeline. In addition, only one ocean carpet is generated to enhance only the

local entity's view into the virtual world. If ocean carpets were to be generated for other

entities, such as surfaced submarines or ships, there is a likelihood of performance

degradation.

40

B. CONCLUSIONS

The objective of this research was to enhance the training potential of NPSNET by

implementing a submarine that has its motion based on a physically-based hydrodynamics

model, and has controls that enable a individuals to use teamwork to control the vehicle.

After performing the development, testing and evaluation of the various aspects of

this project, we have reached the following conclusions:

• Physically-based hydrodynamics models can be implemented in real-time.

• Control of a single entity by various distributed individuals can be accomplished
using a multicast protocol.

• Generation of ocean waves in littoral regions can be accomplished in real-time.

C. LIMITATIONS

As the current submarine implementation stands there are a few limitations to

discuss. The most obvious one is that although a multi-controller protocol is in place for

three individuals to operate the submarine, this task is normally done by over 20 crew

members. To generate controls and supply individual workstations for this number is not

feasible. This work implementation could readily be used for simpler platforms, not

requiring as many operators, such as tanks, planes, an smaller vessels.

In addition to the scalibilty problem of controlling stations, there exists another

scalibilty problem that was not addressed in this work. Since there is only one NPSNET

process running, acting as the host to various controlling applications, there can be only one

view into the virtual world. This view is not capable of being distributed at this time. This

would be important if various participants needed to receive visual ques, like a pilot and

co-pilot.

D. RECOMMENDATIONS FOR FUTURE WORK

This work provides three major improvements to NPSNET IV: a physically based

hydrodynamics model that can be quickly updated to represent various underwater

vehicles; the capability to have multiple users control the same entity, improving the

41

training quality provided by NPSNET; and an improvement to the graphical representation

of the ocean in NPSNET. Some areas of future work are:

• Extending the buoyancy function in the hydrodynamic model to incorporate the
effect of wave motion.

• Modeling the wave motion based on standardized physical representation of
waves.

• Integrate the NPS AUV control code into the NPSNET submersible vehicle class
to allow scripted high-level behavior.

• Establish a way to let remote entities see moving ocean carpets around surfaced
submarines and ships.

• Update undersea weapons with physically based movements.

• Extend the submersible vehicle software to create a graphical way to conduct
Target Motion Analysis (TMA).

• Incorporating the ocean surface model into the Open Inventor-based NPS AUV
undersea Virtual World.

• Integrate the extended hydrodynamics model into actual submersibles to provide
a predictive self-modeling diagnostic capability.

42

43

APPENDIX A - DARPA SUBOFF MODEL COEFFICIENTS

//

/*

 Program: SUBOFFmodel.H (Version of UUVmodel.H for DARPA SUBOFF model)

 Author: Don Brutzman

 Revised: 20 August 95

 System: Irix 5.3

 Compiler: ANSI C++

 Compilation: irix> cp SUBOFFmodel.H UUVmodel.H

 irix> make dynamics

 Advisors: Dr. Mike Zyda, Dr. Bob McGhee and Dr. Tony Healey

 References: Healey, Anthony J. and Lienard, David, "Multivariable

 Sliding Mode Control for Autonomous Diving and Steering

 of Unmanned Underwater Vehicles," IEEE Journal of Oceanic

 Engineering, vol. 18 no. 3, July 1993, pp. 327-339,

 Lewis, Edward V., editor, _Principles of Naval

 Architecture volume III_, second revision, The Society of

 Naval Architects and Marine Engineers, Jersey City

 New Jersey, 1988, pp. 188-190 and 418-423.

 Gertler, Morton and Hagen, Grant R., _Standard Equations

 of Motion for Submarine Simulation_, Naval Ship

 Research and Development Center (NSRDC) Research and

 Development Report 2510, Washington DC, June 1967.

44

 Smith, N.S., Crane J.W. and Summey, D.C., _SDV Simulator

 Hydrodynamic Coefficients_, Naval Coastal Systems Center

 (NCSC), Panama City Florida, June 1978. Declassified.

 Marco, David. "Slow Speed Control and Dynamic Positioning

 of an Autonomous Vehicle," Ph.D. dissertation,

 Naval Postgraduate School, Monterey California, March 1995.

 Bahrke, Fredric G., "On-Line Identificaton of the Speed,

 Steering and Diving Response Parameters of an Autonomous

 Underwater Vehicle from Experimental Data," Master's Thesis,

 Naval Postgraduate School, Monterey California, March 1992.

 Warner, David C., "Design, Simulation and Experimental

 Verification of a Computer Model and Enhanced Position

 Estimator for the NPS AUV II," Master's Thesis,

 Naval Postgraduate School, Monterey California, December 1991.

 Bacon, Daniel K. Jr., "Integration of a Submarine into

 NPSNET," Master's Thesis, Naval Postgraduate School,

 Monterey California, September 1995.

 Roddy, Robert F., "Investigation of the Stability and Control

 Characteristics of Several Configurations of the DARPA SUBOFF

 Model (DTRC Model 5470) from Captive-Model Experiments,"

 Technical Report DTRC/SHD-1298-08, Ship Hydrodynamics

 Department, David Taylor Research Center (DTRC),

 September 1990 (unclassified).

 Model note: We use values for DARPA SUBOFF model in Configuration 2

 (fully appended) which includes plane surfaces.

 Notes: const definitions are for software engineering reliability

 they can be changed to variables if coefficient modification

 becomes desirable

45

 value for N_prop needed (twist due to single screw)

 add clamp values for planes, rudders and propulsors

 pass clamp values to execution level

*/

//

#ifndef UUVMODEL_H

#define UUVMODEL_H // prevent errors if multiple #includes present

#define UUVMODEL_VERSION "DARPA SUBOFF hydrodynamics model"

// #define SI // <<<<<<<<<<<<<<<< uncomment this statement for SI units

 // otherwise standard British units used

//--//

// term value units description

//--//

#ifdef SI // Systeme International (metric) units ------------------------

const double Weight = 1556.2363*0.454; // N Weight (0.454 kg/lb == 1)

 // = 706.53128

const double Buoyancy= 1556.2363*0.454; // N Buoyancy (0.454 kg/lb == 1)

 // = 706.53128

const double L = 14.2917*0.3048; // m characteristic length 14.2917'

const double g = 9.81 ; // m/s^2 gravitational constant

const double rho = 1000.0 ; // kg/m^3 mass density of fresh water

const double m = Weight / g ; // N-s^2/m vehicle mass incl. free flood

 // = 72.021537

#define m4_ft4 (0.305)*(0.305)*(0.305)*(0.305) // (0.305 m/ft == 1)

46

 ; // Inertia matrix coefficients

const double I_x = 0.0 *m4_ft4 ; // Nms^2 = I_xx =

const double I_y = 0.001053*m4_ft4 ; // Nms^2 = I_yy =

const double I_z = 0.001084*m4_ft4 ; // Nms^2 = I_zz =

const double I_xy = 0.0 ; // Nms^2 = I_yx

const double I_xz = 0.0 ; // Nms^2 = I_zx

const double I_yz = 0.0 ; // Nms^2 = I_zy

#undef m4_ft4

 // Centers of Gravity & Buoyancy

const double x_G = 0.556 *0.3048; // m

const double y_G = 0.0 *0.3048; // m

const double z_G = 0.0 *0.3048; // m Note CG below CB Marco 0.5"

const double x_B = 0.532094*0.3048; // m

const double y_B = 0.0 *0.3048; // m

const double z_B = -0.006669*0.3048; // m CB at center of UUV

// Additional hull characteristics //

const double H = 0.240792 ; // m main hull height 9.50"

 double revisedBuoyancy, revised_x_B;

 double surface_length = 0.0; // distances (CB to surface) & (CB to nose)

 // along body axis

const double nose_length = (0.90 * L) / 2.0;

#else // (not SI) standard British units ---------------------------------------

const double Weight = 1556.2363 ; // lb Weight

const double Buoyancy= 1556.2363 ; // lb Buoyancy

const double L = 14.2917 ; // ft characteristic length

const double g = 32.174 ; // ft/s^2 gravitational constant

47

const double rho = 1.94 ; // slugs/ft^3 mass density of fresh water

const double m = Weight / g ; // lb/ft-s^2 vehicle mass incl. free flood

 // = 48.369376

// Moments of inertia units normalized using perpendicular length 13.9792 ft

// (Roddy p.3, Feldman p. 6)

#define Lnorm(i) (i * 0.5*rho*13.9792*13.9792*13.9792*13.9792*13.9792)

 ; // Inertia matrix coefficients

// new value I_x not found, verify through calculations ??

const double I_x = Lnorm(0.000060); // lb-ft-sec^2 =I_xx

const double I_y = Lnorm(0.001053); // lb-ft-sec^2 =I_yy

const double I_z = Lnorm(0.001084); // lb-ft-sec^2 =I_zz

const double I_xy = Lnorm(0.0) ; // lb-ft-sec^2 =I_yx

const double I_xz = Lnorm(0.0) ; // lb-ft-sec^2 =I_zx

const double I_yz = Lnorm(0.0) ; // lb-ft-sec^2 =I_zy

// print values as comments here ***

#undef Lnorm(i)

// Model length = 14.292', body coordinate center (0,0,0) will be at

// midpoints (longitudinal = 14.292/2 = 7.146', vertical = 1.667/2 = 0.83')

// CG: x_G = 7.146 - 6.590 = 0.556' (Figure 1 p. 9)

// CG: y_G = 0.0' (Figure 1 p. 9 not given)

// CG: z_G = 0.0' (Figure 1 p. 9)

// CB: x_B = 7.146 - 6.613906 = 0.532094' (Table 1c p. 14 LCB)

// CB: y_B = 0.0' (Table 1c p. 14 not given)

// CB: z_B = -0.006669' (Table 1c p. 14 VCB)

 // Centers of Gravity & Buoyancy

const double x_G = 0.532094 ; // ft listed as 0.556

48

const double y_G = 0.0 ; // ft

// *** modification - z_G moved down from 0.0 for more adequate righting arm ***

const double z_G = 0.5 ; // ft Note CG below CB

const double x_B = 0.532094 ; // ft 0.010416667

const double y_B = 0.0 ; // ft

const double z_B = -0.006669 ; // ft

// Thruster/propeller distances from centerlines. Note stern/port are negative.

const double x_bow_vertical = 0.0 ; // ft No thrusters!

const double x_stern_vertical = 0.0 ; // ft

const double x_bow_lateral = 0.0 ; // ft

const double x_stern_lateral = 0.0 ; // ft

const double y_port_propeller = 0.0 ; // ft Single propeller, on centerline

const double y_stbd_propeller = 0.0 ; // ft

// Rudder bow/stern distances from centerlines. 0.5 is all the way forward/aft.

const double x_rb = 0.0 * L; // proportional distance to bow (none!)

const double x_rs = -0.427 * L; // proportional distance to stern

// Additional hull characteristics //

const double H = 1.667 ; // ft main hull diameter 1.667 ft

 double revisedBuoyancy, revised_x_B;

 double surface_length = 0.0; // distances (CB to surface) & (CB to nose)

 // along body axis

const double nose_length = (0.90 * L) / 2.0;

const int THRUSTERS = FALSE; // are cross-body thrusters present?

49

#endif

//--//

// Surge equation of motion coefficients //

// *** warning: no X_ coefficients found in Roddy reference for ARPA SUBOFF

const double X_u_dot = 0.0 ; // Linear force coefficients acting in

const double X_v_dot = 0.0 ; // the longitudinal body axis

const double X_w_dot = 0.0 ; // with respect to subscripted

const double X_p_dot = 0.0 ; // motion components

const double X_q_dot = 0.0 ; //

const double X_r_dot = 0.0 ; //

const double X_uu = 0.0 ; //

const double X_vv = 0.0 ; //

const double X_ww = 0.0 ; //

const double X_pp = 0.0 ; //

const double X_qq = 0.0 ; //

const double X_rr = 0.0 ; //

const double X_prop = 0.0 ; // X_prop "constant" no longer applicable

// plane surface drags not given, either 0 or estimated at 1/2 AUV effectiveness

// (same swag factor for other coefficients later)

const double X_uu_delta_b_delta_b = 0.0 ; // drag due to bow plane

const double X_uu_delta_s_delta_s = -1.018E-2/2.0 ; // drag due to stern plane

const double X_uu_delta_r_delta_r = -1.018E-2/2.0 ; // drag due to rudder

 // single plane/rudder set

const double X_pr = 0.0 ; // (these aren't in Bahrke thesis model)

const double X_wq = 0.0 ; //

const double X_vp = 0.0 ; //

const double X_vr = 0.0 ; //

const double X_uq_delta_bow = 0.0 ; //

50

const double X_uq_delta_stern = 0.0 ; //

const double X_ur_delta_rudder = 0.0 ; //

const double X_uv_delta_rudder = 0.0 ; //

const double X_uw_delta_bow = 0.0 ; //

const double X_uw_delta_stern = 0.0 ; //

const double X_qdsn = 0.0 ; // no longer used in new model

const double X_wdsn = 0.0 ; // no longer used in new model

const double X_dsdsn = 0.0 ; // no longer used in new model

// we assume 5 knot max speed = 500 yds/3 min = 500 ft/min = 8.333 ft/sec

// we assume max rpm is 200

const double speed_per_rpm = 8.333 / 200.0 ; // steady state: 0.04166

 // = (8.333 feet/sec) per 200 rpm

const double MAX_RPM = 200.0 ; // single propeller only

// *** recheck this value:

const double C_d0 = 0.00778 ; //

//--//

// Sway equation of motion coefficients //

const double Y_u_dot = 0.0 ; // Linear force coefficients acting in

const double Y_v_dot = -0.016186 ; // the athwartships body axis

const double Y_w_dot = 0.0 ; // with respect to subscripted

const double Y_p_dot = 0.0 ; // motion components

const double Y_q_dot = 0.0 ; //

const double Y_r_dot = -0.000398 ; // sign change??

const double Y_uu = 0.0 ; //

const double Y_uv = -0.027834 ; //

const double Y_uw = 0.0 ; //

const double Y_up = 0.0 ; //

const double Y_uq = 0.0 ; //

51

const double Y_ur = 0.005251 ; //

const double Y_uu_delta_rb = 0.0 ; // no bow rudder

const double Y_uu_delta_rs = 1.18E-2/2.0 ; //

const double Y_pq = 0.0 ; // (these aren't in Bahrke thesis model)

const double Y_qr = 0.0 ; //

const double Y_vq = 0.0 ; //

const double Y_wp = 0.0 ; //

const double Y_wr = 0.0 ; //

const double Y_vw = 0.0 ; //

const double C_dy = 0.5 ; // ??

//--//

// Heave equation of motion coefficients //

const double Z_u_dot = 0.0 ; // Linear force coefficients acting in

const double Z_v_dot = 0.0 ; // the vertical body axis

const double Z_w_dot = -0.014529 ; // with respect to subscripted

const double Z_p_dot = 0.0 ; // motion components

const double Z_q_dot = -0.000633 ; //

const double Z_r_dot = 0.0 ; //

const double Z_vv = 0.0 ; //

const double Z_uw = -0.013910 ; //

const double Z_up = 0.0 ; //

const double Z_uq = -0.007545 ; //

const double Z_rr = 0.0 ; //

const double Z_pp = 0.0 ; //

const double Z_uu_delta_b = 0.0 ; //

const double Z_uu_delta_s = -0.005603 ; //

const double Z_pr = 0.0 ; // (these aren't in Bahrke thesis model)

const double Z_vp = 0.0 ; //

52

const double Z_vr = 0.0 ; //

const double Z_qn = 0.0 ; // no longer used in new model

const double Z_wn = 0.0 ; // no longer used in new model

const double Z_dsn = 0.0 ; // no longer used in new model

const double C_dz = 0.6 ; // ??

//--//

// Roll equation of motion coefficients //

const double K_u_dot = 0.0 ; // Angular force coefficient acting

const double K_v_dot = 0.0 ; // about the longitudinal body axis

const double K_w_dot = 0.0 ; // with respect to subscripted

const double K_p_dot = -2.4E-4 ; // motion components

 // NPS AUV value used since no SUBOFF value provided

const double K_q_dot = 0.0 ; //

const double K_r_dot = 0.0 ; //

const double K_uu = 0.0 ; //

const double K_uv = -0.000584 ; // NPS AUV is zero!

const double K_uw = 0.0 ; //

const double K_up = -5.4E-3 ; // surge-related roll damping drag

 // NPS AUV value used since no SUBOFF value provided

const double K_uq = 0.0 ; //

const double K_ur = 0.0 ; //

const double K_uu_planes = 0.0 ; // (these aren't in Bahrke thesis model)

const double K_pq = 0.0 ; //

const double K_qr = 0.0 ; //

const double K_vq = 0.0 ; //

const double K_wp = 0.0 ; //

const double K_wr = 0.0 ; //

const double K_vw = 0.0 ; //

53

const double K_prop = 0.0 ; // K_prop "constant" no longer applicable

const double K_pn = 0.0 ; // no longer used in new model

const double K_pp = -2.02E-2 ; // test value for p-squared damping

 // static roll damping drag

 // NPS AUV value used since no SUBOFF value provided

const double K_p = K_pp/57.3 ; // estimate based on quadratic term

 // (K_pp) equivalent damping at 1 deg/sec

//--//

// Pitch equation of motion coefficients //

const double M_u_dot = 0.0 ; // Angular force coefficient acting

const double M_v_dot = 0.0 ; // about the athwartships body axis

const double M_w_dot = -0.000561 ; // with respect to subscripted

const double M_p_dot = 0.0 ; // motion components

const double M_q_dot = -0.000860 ; //

const double M_r_dot = 0.0 ; //

const double M_uu = 0.0 ; //

const double M_vv = 0.0 ; //

const double M_uw = -0.010324 ; //

const double M_pp = 0.0 ; //

const double M_rr = 0.0 ; //

const double M_uq = -0.003702 ; // surge-related pitch damping drag ***

const double M_uu_delta_bow = 0.0; // no bow rudder

const double M_uu_delta_stern = - x_rs * Z_uu_delta_s / 2.0;

 // note (-) Z_uu_delta_s

 // = - 0.058085219

54

const double M_pr = 0.0 ; // (these aren't in Bahrke thesis model)

const double M_vp = 0.0 ; //

const double M_vr = 0.0 ; //

const double M_prop = 0.0 ; // M_prop "constant" no longer applicable

const double M_qn = 0.0 ; // no longer used in new model

const double M_wn = 0.0 ; // no longer used in new model

const double M_dsn = 0.0 ; // no longer used in new model

const double M_qq = -7.00E-3 ; // slightly larger than N_rr estimate

 // test value for q-squared

 // static pitch damping drag

 // estimated M_qq ~ K_pp * length / width

 // Torsiello ~ 0.005* 7.3'/ 10.1" = .005

const double M_q = M_qq / 57.3; // estimate based on quadratic term

 // (M_qq) equivalent damping at 1 deg/sec

//--//

// Yaw equation of motion coefficients //

const double N_u_dot = 0.0 ; // Angular force coefficient acting

const double N_v_dot = -0.000396 ; // about the vertical body axis

const double N_w_dot = 0.0 ; // with respect to subscripted

const double N_p_dot = 0.0 ; // motion components

const double N_q_dot = 0.0 ; //

const double N_r_dot = -0.000897 ; //

const double N_uu = 0.0 ; //

const double N_uv = -0.013648 ; // NPS AUV is zero!

const double N_uw = 0.0 ; //

const double N_up = 0.0 ; //

const double N_uq = 0.0 ; //

const double N_ur = -0.004444 ; // surge-related yaw damping drag

55

// N_uu_delta_rb and N_uu_delta_rs not symmetric due to different moment arms

const double N_uu_delta_rb = 0.0 ; // No bow rudder

const double N_uu_delta_rs = - x_rs * Y_uu_delta_rs / 2.0; //

const double N_prop = 0.0 ; // Normally 0.0 yaw moment due to paired

 // counter-rotating propellors;

 // *** however N_prop is not zero if propellor rpms are independent

 // thus yaw equation of motion now has yaw moments due to propellers

 // and N_prop "constant" is no longer applicable

 // *** value needed to account for single propeller twisting force

const double N_pq = 0.0 ; // (these aren't in Bahrke thesis model)

const double N_qr = 0.0 ; //

const double N_vq = 0.0 ; //

const double N_wp = 0.0 ; //

const double N_wr = 0.0 ; //

const double N_vw = 0.0 ; //

const double N_rr = -5.48E-3 ; // Torsiello value p.113 adjusted for L^5

 // correction; static yaw damping drag

 // estimated N_rr ~ M_qq * height/ width

 // = .040 * 10.1" / 16.5"

 // = 0.005

 // Torsiello: 0.005

 // Healey: N_rr ~ M_qq

// alternate N_rr = 2 * 2# * 1.92' /(rho/2 L^5 * r_max * r_max) => 0.0048473244

// using r_max = 16 deg/sec Torsiello which is consistent

const double N_r = N_rr / 57.3; // estimate based on quadratic term

 // (N_rr) equivalent damping at 1 deg/sec

//--//

56

// DEFINE THE LENGTH X, BREADTH bb, AND HEIGHT hh TERMS

const int cross_sections = 25;

// we must convert station coordinates (Roddy p. 16) to body coordinates

// center STATION value about zero then rescale to match actual size:

// (al units FEET)

#define STATION_TO_BODY(x) ((x - (20.4167/2.0)) * 14.2917 / 20.4167)

// Now a conversion function to convert B/B_x to feet (max diameter 1.667 ft)

// Note these values will be the same for hh and bb since SUBOFF is a cylinder

#define B_BX_TO_FEET(y) (y * 1.16667)

 double xx [cross_sections] = {

 STATION_TO_BODY(0.0),

 STATION_TO_BODY(0.1),

 STATION_TO_BODY(0.2),

 STATION_TO_BODY(0.3),

 STATION_TO_BODY(0.4),

 STATION_TO_BODY(0.5),

 STATION_TO_BODY(0.6),

 STATION_TO_BODY(0.7),

 STATION_TO_BODY(1.0),

 STATION_TO_BODY(2.0),

 STATION_TO_BODY(3.0),

 STATION_TO_BODY(4.0),

 STATION_TO_BODY(7.7143),

 STATION_TO_BODY(10.0),

 STATION_TO_BODY(15.1429),

 STATION_TO_BODY(16.0),

 STATION_TO_BODY(17.0),

 STATION_TO_BODY(18.0),

 STATION_TO_BODY(19.0),

 STATION_TO_BODY(20.0),

57

 STATION_TO_BODY(20.1),

 STATION_TO_BODY(20.2),

 STATION_TO_BODY(20.3),

 STATION_TO_BODY(20.4),

 STATION_TO_BODY(20.4167)

 };

 double hh [cross_sections] = {

 B_BX_TO_FEET(0.00000),

 B_BX_TO_FEET(0.29058),

 B_BX_TO_FEET(0.39396),

 B_BX_TO_FEET(0.46600),

 B_BX_TO_FEET(0.52147),

 B_BX_TO_FEET(0.56627),

 B_BX_TO_FEET(0.60352),

 B_BX_TO_FEET(0.63514),

 B_BX_TO_FEET(0.70744),

 B_BX_TO_FEET(0.84713),

 B_BX_TO_FEET(0.94066),

 B_BX_TO_FEET(0.99282),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(0.97598),

 B_BX_TO_FEET(0.81910),

 B_BX_TO_FEET(0.55025),

 B_BX_TO_FEET(0.26835),

 B_BX_TO_FEET(0.11724),

 B_BX_TO_FEET(0.11243),

 B_BX_TO_FEET(0.10074),

 B_BX_TO_FEET(0.07920),

 B_BX_TO_FEET(0.03178),

 B_BX_TO_FEET(0.00000)

 };

 // note identical since cylindrical

58

 double bb [cross_sections] = {

 B_BX_TO_FEET(0.00000),

 B_BX_TO_FEET(0.29058),

 B_BX_TO_FEET(0.39396),

 B_BX_TO_FEET(0.46600),

 B_BX_TO_FEET(0.52147),

 B_BX_TO_FEET(0.56627),

 B_BX_TO_FEET(0.60352),

 B_BX_TO_FEET(0.63514),

 B_BX_TO_FEET(0.70744),

 B_BX_TO_FEET(0.84713),

 B_BX_TO_FEET(0.94066),

 B_BX_TO_FEET(0.99282),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(0.97598),

 B_BX_TO_FEET(0.81910),

 B_BX_TO_FEET(0.55025),

 B_BX_TO_FEET(0.26835),

 B_BX_TO_FEET(0.11724),

 B_BX_TO_FEET(0.11243),

 B_BX_TO_FEET(0.10074),

 B_BX_TO_FEET(0.07920),

 B_BX_TO_FEET(0.03178),

 B_BX_TO_FEET(0.00000)

 };

#undef STATION_TO_BODY(x)

#undef B_BX_TO_FEET(y)

//--//

#endif // UUVMODEL_H

59

APPENDIX B - GENERIC SUBMARINE MODEL
COEFFICIENTS

///

/*

 Program: SUBOFFmodel.H (Version of UUVmodel.H for DARPA SUBOFF model)

 Author: Don Brutzman

 Revised: 16 August 95

 System: Irix 5.3

 Compiler: ANSI C++

 Compilation: irix> cp SUBOFFmodel.H UUVmodel.H

 irix> make dynamics

 Advisors: Dr. Mike Zyda, Dr. Bob McGhee and Dr. Tony Healey

 References: Healey, Anthony J. and Lienard, David, "Multivariable

 Sliding Mode Control for Autonomous Diving and Steering

 of Unmanned Underwater Vehicles," IEEE Journal of Oceanic

 Engineering, vol. 18 no. 3, July 1993, pp. 327-339,

 Lewis, Edward V., editor, _Principles of Naval

 Architecture volume III_, second revision, The Society of

 Naval Architects and Marine Engineers, Jersey City

 New Jersey, 1988, pp. 188-190 and 418-423.

 Gertler, Morton and Hagen, Grant R., _Standard Equations

 of Motion for Submarine Simulation_, Naval Ship

 Research and Development Center (NSRDC) Research and

 Development Report 2510, Washington DC, June 1967.

60

 Smith, N.S., Crane J.W. and Summey, D.C., _SDV Simulator

 Hydrodynamic Coefficients_, Naval Coastal Systems Center

 (NCSC), Panama City Florida, June 1978. Declassified.

 Marco, David. "Slow Speed Control and Dynamic Positioning

 of an Autonomous Vehicle," Ph.D. dissertation,

 Naval Postgraduate School, Monterey California, March 1995.

 Bahrke, Fredric G., "On-Line Identificaton of the Speed,

 Steering and Diving Response Parameters of an Autonomous

 Underwater Vehicle from Experimental Data," Master's Thesis,

 Naval Postgraduate School, Monterey California, March 1992.

 Warner, David C., "Design, Simulation and Experimental

 Verification of a Computer Model and Enhanced Position

 Estimator for the NPS AUV II," Master's Thesis,

 Naval Postgraduate School, Monterey California, December 1991.

 Bacon, Daniel K. Jr., "Integration of a Submarine into

 NPSNET," Master's Thesis, Naval Postgraduate School,

 Monterey California, September 1995.

 Roddy, Robert F., "Investigation of the Stability and Control

 Characteristics of Several Configurations of the DARPA SUBOFF

 Model (DTRC Model 5470) from Captive-Model Experiments,"

 Technical Report DTRC/SHD-1298-08, Ship Hydrodynamics

 Department, David Taylor Research Center (DTRC),

 September 1990 (unclassified).

 Model note: We use values for DARPA SUBOFF model in Configuration 2

 (fully appended) which includes plane surfaces.

 Notes: const definitions are for software engineering reliability

 they can be changed to variables if coefficient modification

 becomes desirable

61

 value for N_prop needed (twist due to single screw)

*/

//

#ifndef UUVMODEL_H

#define UUVMODEL_H // prevent errors if multiple #includes present

#define UUVMODEL_VERSION "USS BACON (generic SSN) hydrodynamics model"

// #define SI // <<<<<<<<<<<<<<<< uncomment this statement for SI units

 // otherwise standard British units used

//--//

// term value units description

//--//

#ifdef SI // Systeme International (metric) units ------------------------

const double Weight = 1556.2363*0.454; // N Weight (0.454 kg/lb == 1)

 // = 706.53128

const double Buoyancy= 1556.2363*0.454; // N Buoyancy (0.454 kg/lb == 1)

 // = 706.53128

const double L = 14.2917*0.3048; // m characteristic length 14.2917'

const double g = 9.81 ; // m/s^2 gravitational constant

const double rho = 1000.0 ; // kg/m^3 mass density of fresh water

const double m = Weight / g ; // N-s^2/m vehicle mass incl. free flood

 // = 72.021537

#define m4_ft4 (0.305)*(0.305)*(0.305)*(0.305) // (0.305 m/ft == 1)

 ; // Inertia matrix coefficients

const double I_x = 0.0 *m4_ft4 ; // Nms^2 = I_xx =

62

const double I_y = 0.001053*m4_ft4 ; // Nms^2 = I_yy =

const double I_z = 0.001084*m4_ft4 ; // Nms^2 = I_zz =

const double I_xy = 0.0 ; // Nms^2 = I_yx

const double I_xz = 0.0 ; // Nms^2 = I_zx

const double I_yz = 0.0 ; // Nms^2 = I_zy

#undef m4_ft4

 // Centers of Gravity & Buoyancy

const double x_G = 0.556 *0.3048; // m

const double y_G = 0.0 *0.3048; // m

const double z_G = 0.0 *0.3048; // m Note CG below CB Marco 0.5"

const double x_B = 0.532094*0.3048; // m

const double y_B = 0.0 *0.3048; // m

const double z_B = -0.006669*0.3048; // m CB at center of UUV

// Additional hull characteristics //

const double H = 0.240792 ; // m main hull height 9.50"

 double revisedBuoyancy, revised_x_B;

 double surface_length = 0.0; // distances (CB to surface) & (CB to nose)

 // along body axis

const double nose_length = (0.90 * L) / 2.0;

#else // (not SI) standard British units ---------------------------------------

const double Weight = 6900.0 * 2000.0 ; // lb Weight

const double Buoyancy= 6900.0 * 2000.0 ; // lb Buoyancy

const double L = 360.0 ; // ft characteristic length

const double g = 32.174 ; // ft/s^2 gravitational constant

const double rho = 1.94 ; // slugs/ft^3 mass density of fresh water

const double m = Weight / g ; // lb/ft-s^2 vehicle mass incl. free flood

 // =

63

// Moments of inertia units normalized using perpendicular length 13.9792 ft

// (Roddy p.3, Feldman p. 6)

#define Lnorm(i) (i * 0.5*rho*360.0*360.0*360.0*360.0*360.0)

// naive approach to scaling up moments of inertia

 ; // Inertia matrix coefficients

// new value I_x not found, verify through calculations ??

const double I_x = Lnorm(0.000060); // lb-ft-sec^2 =I_xx

const double I_y = Lnorm(0.001053); // lb-ft-sec^2 =I_yy

const double I_z = Lnorm(0.001084); // lb-ft-sec^2 =I_zz

const double I_xy = Lnorm(0.0) ; // lb-ft-sec^2 =I_yx

const double I_xz = Lnorm(0.0) ; // lb-ft-sec^2 =I_zx

const double I_yz = Lnorm(0.0) ; // lb-ft-sec^2 =I_zy

#undef Lnorm(i)

 // Centers of Gravity & Buoyancy

const double x_G = 0.0 ; // ft listed as 0.556

const double y_G = 0.0 ; // ft

// *** modification - z_G moved down from 0.0 for more adequate righting arm ***

const double z_G = 3.0 ; // ft Note CG below CB

const double x_B = 0.0 ; // ft 0.010416667

const double y_B = 0.0 ; // ft

const double z_B = 0.0 ; // ft

// Thruster/propeller distances from centerlines. Note stern/port are negative.

const double x_bow_vertical = 0.0 ; // ft No thrusters!

const double x_stern_vertical = 0.0 ; // ft

64

const double x_bow_lateral = 0.0 ; // ft

const double x_stern_lateral = 0.0 ; // ft

const double y_port_propeller = 0.0 ; // ft Single propeller, on centerline

const double y_stbd_propeller = 0.0 ; // ft

// Rudder bow/stern distances from centerlines. 0.5 is all the way forward/aft.

const double x_rb = 0.0 * L; // proportional distance to bow (none!)

const double x_rs = -0.427 * L; // proportional distance to stern

// Additional hull characteristics //

const double H = 32.0 ; // ft main hull diameter 32.0 ft

 double revisedBuoyancy, revised_x_B;

 double surface_length = 0.0; // distances (CB to surface) & (CB to nose)

 // along body axis

const double nose_length = (0.90 * L) / 2.0;

const int THRUSTERS = FALSE; // are cross-body thrusters present?

#endif

//--//

// Surge equation of motion coefficients //

// *** warning: no X_ coefficients found in Roddy reference

const double X_u_dot = 0.0 ; // Linear force coefficients acting in

const double X_v_dot = 0.0 ; // the longitudinal body axis

const double X_w_dot = 0.0 ; // with respect to subscripted

const double X_p_dot = 0.0 ; // motion components

const double X_q_dot = 0.0 ; //

const double X_r_dot = 0.0 ; //

65

const double X_uu = 0.0 ; //

const double X_vv = 0.0 ; //

const double X_ww = 0.0 ; //

const double X_pp = 0.0 ; //

const double X_qq = 0.0 ; //

const double X_rr = 0.0 ; //

const double X_prop = 0.0 ; // X_prop "constant" no longer applicable

// plane surface drags not given, either 0 or estimated at 1/2 AUV effectiveness

// (same swag factor for other coefficients later)

const double X_uu_delta_b_delta_b = 0.0 ; // drag due to bow plane

const double X_uu_delta_s_delta_s = -1.018E-2/2.0 ; // drag due to stern plane

const double X_uu_delta_r_delta_r = -1.018E-2/2.0 ; // drag due to rudder

const double X_pr = 0.0 ; // (these aren't in Bahrke thesis model)

const double X_wq = 0.0 ; //

const double X_vp = 0.0 ; //

const double X_vr = 0.0 ; //

const double X_uq_delta_bow = 0.0 ; //

const double X_uq_delta_stern = 0.0 ; //

const double X_ur_delta_rudder = 0.0 ; //

const double X_uv_delta_rudder = 0.0 ; //

const double X_uw_delta_bow = 0.0 ; //

const double X_uw_delta_stern = 0.0 ; //

const double X_qdsn = 0.0 ; // no longer used in new model

const double X_wdsn = 0.0 ; // no longer used in new model

const double X_dsdsn = 0.0 ; // no longer used in new model

// we assume 20 knot max speed = 2000 yds/3 min = 2000 ft/min = 33.333 ft/sec

// we assume max rpm is 200

const double speed_per_rpm = 33.333 / 200.0 ; // steady state: 0.16667

66

 // = (33.3 feet/sec) per 200 rpm

const double MAX_RPM = 200.0 ; //

// *** recheck this value:

const double C_d0 = 0.00778 ; //

//--//

// Sway equation of motion coefficients //

const double Y_u_dot = 0.0 ; // Linear force coefficients acting in

const double Y_v_dot = -0.016186 ; // the athwartships body axis

const double Y_w_dot = 0.0 ; // with respect to subscripted

const double Y_p_dot = 0.0 ; // motion components

const double Y_q_dot = 0.0 ; //

const double Y_r_dot = -0.000398 ; // sign change??

const double Y_uu = 0.0 ; //

const double Y_uv = -0.027834 ; //

const double Y_uw = 0.0 ; //

const double Y_up = 0.0 ; //

const double Y_uq = 0.0 ; //

const double Y_ur = 0.005251 ; //

const double Y_uu_delta_rb = 0.0 ; // no bow rudder

const double Y_uu_delta_rs = 1.18E-2/2.0 ; //

const double Y_pq = 0.0 ; // (these aren't in Bahrke thesis model)

const double Y_qr = 0.0 ; //

const double Y_vq = 0.0 ; //

const double Y_wp = 0.0 ; //

const double Y_wr = 0.0 ; //

const double Y_vw = 0.0 ; //

const double C_dy = 0.5 ; // ??

67

//--//

// Heave equation of motion coefficients //

const double Z_u_dot = 0.0 ; // Linear force coefficients acting in

const double Z_v_dot = 0.0 ; // the vertical body axis

const double Z_w_dot = -0.014529 ; // with respect to subscripted

const double Z_p_dot = 0.0 ; // motion components

const double Z_q_dot = -0.000633 ; //

const double Z_r_dot = 0.0 ; //

const double Z_vv = 0.0 ; //

const double Z_uw = -0.013910 ; //

const double Z_up = 0.0 ; //

const double Z_uq = -0.007545 ; //

const double Z_rr = 0.0 ; //

const double Z_pp = 0.0 ; //

const double Z_uu_delta_b = 0.0 ; //

const double Z_uu_delta_s = -0.005603 ; //

const double Z_pr = 0.0 ; // (these aren't in Bahrke thesis model)

const double Z_vp = 0.0 ; //

const double Z_vr = 0.0 ; //

const double Z_qn = 0.0 ; // no longer used in new model

const double Z_wn = 0.0 ; // no longer used in new model

const double Z_dsn = 0.0 ; // no longer used in new model

const double C_dz = 0.6 ; // ??

//--//

// Roll equation of motion coefficients //

const double K_u_dot = 0.0 ; // Angular force coefficient acting

const double K_v_dot = 0.0 ; // about the longitudinal body axis

const double K_w_dot = 0.0 ; // with respect to subscripted

68

const double K_p_dot = -2.4E-4 ; // motion components

 // NPS AUV value used

const double K_q_dot = 0.0 ; //

const double K_r_dot = 0.0 ; //

const double K_uu = 0.0 ; //

const double K_uv = -0.000584 ; //

const double K_uw = 0.0 ; //

const double K_up = -5.4E-3 ; // surge-related roll damping drag

 // NPS AUV value used

const double K_uq = 0.0 ; //

const double K_ur = 0.0 ; //

const double K_uu_planes = 0.0 ; // (these aren't in Bahrke thesis model)

const double K_pq = 0.0 ; //

const double K_qr = 0.0 ; //

const double K_vq = 0.0 ; //

const double K_wp = 0.0 ; //

const double K_wr = 0.0 ; //

const double K_vw = 0.0 ; //

const double K_prop = 0.0 ; // K_prop "constant" no longer applicable

const double K_pn = 0.0 ; // no longer used in new model

const double K_pp = -2.02E-2 ; // test value for p-squared damping

 // static roll damping drag

 // NPS AUV value used

const double K_p = K_pp/57.3 ; // estimate based on quadratic term

 // (K_pp) equivalent damping at 1 deg/sec

//--//

// Pitch equation of motion coefficients //

69

const double M_u_dot = 0.0 ; // Angular force coefficient acting

const double M_v_dot = 0.0 ; // about the athwartships body axis

const double M_w_dot = -0.000561 ; // with respect to subscripted

const double M_p_dot = 0.0 ; // motion components

const double M_q_dot = -0.000860 ; //

const double M_r_dot = 0.0 ; //

const double M_uu = 0.0 ; //

const double M_vv = 0.0 ; //

const double M_uw = -0.010324 ; //

const double M_pp = 0.0 ; //

const double M_rr = 0.0 ; //

const double M_uq = -0.003702 ; // surge-related pitch damping drag ***

const double M_uu_delta_bow = 0.0;

const double M_uu_delta_stern = - x_rs * Z_uu_delta_s / 2.0;

 // note (-) Z_uu_delta_s

 // = - 0.058085219

const double M_pr = 0.0 ; // (these aren't in Bahrke thesis model)

const double M_vp = 0.0 ; //

const double M_vr = 0.0 ; //

const double M_prop = 0.0 ; // M_prop "constant" no longer applicable

const double M_qn = 0.0 ; // no longer used in new model

const double M_wn = 0.0 ; // no longer used in new model

const double M_dsn = 0.0 ; // no longer used in new model

const double M_qq = -7.00E-3 ; // slightly larger than N_rr estimate

 // test value for q-squared

 // static pitch damping drag

 // estimated M_qq ~ K_pp * length / width

 // Torsiello ~ 0.005* 7.3'/ 10.1" = .005

70

const double M_q = M_qq / 57.3; // estimate based on quadratic term

 // (M_qq) equivalent damping at 1 deg/sec

//--//

// Yaw equation of motion coefficients //

const double N_u_dot = 0.0 ; // Angular force coefficient acting

const double N_v_dot = -0.000396 ; // about the vertical body axis

const double N_w_dot = 0.0 ; // with respect to subscripted

const double N_p_dot = 0.0 ; // motion components

const double N_q_dot = 0.0 ; //

const double N_r_dot = -0.000897 ; //

const double N_uu = 0.0 ; //

const double N_uv = -0.013648 ; //

const double N_uw = 0.0 ; //

const double N_up = 0.0 ; //

const double N_uq = 0.0 ; //

const double N_ur = -0.004444 ; // surge-related yaw damping drag

// N_uu_delta_rb and N_uu_delta_rs not symmetric due to different moment arms

const double N_uu_delta_rb = 0.0 ; // No bow rudder

const double N_uu_delta_rs = - x_rs * Y_uu_delta_rs / 2.0; //

const double N_prop = 0.0 ; // Normally 0.0 yaw moment due to paired

 // counter-rotating propellors;

 // however N_prop is not zero if propellor rpms are independent

 // thus yaw equation of motion now has yaw moments due to propellers

 // and N_prop "constant" is no longer applicable

const double N_pq = 0.0 ; // (these aren't in Bahrke thesis model)

const double N_qr = 0.0 ; //

const double N_vq = 0.0 ; //

71

const double N_wp = 0.0 ; //

const double N_wr = 0.0 ; //

const double N_vw = 0.0 ; //

const double N_rr = -5.48E-3 ; // Torsiello value p.113 adjusted for L^5

 // correction; static yaw damping drag

 // estimated N_rr ~ M_qq * height/ width

 // = .040 * 10.1" / 16.5"

 // = 0.005

 // Torsiello: 0.005

 // Healey: N_rr ~ M_qq

// alternate N_rr = 2 * 2# * 1.92' /(rho/2 L^5 * r_max * r_max) => 0.0048473244

// using r_max = 16 deg/sec Torsiello which is consistent

const double N_r = N_rr / 57.3; // estimate based on quadratic term

 // (N_rr) equivalent damping at 1 deg/sec

//--//

// DEFINE THE LENGTH X, BREADTH bb, AND HEIGHT hh TERMS

const int cross_sections = 25;

// we must convert station coordinates (Roddy p. 16) to body coordinates

// center STATION value about zero then rescale to match actual size:

#define STATION_TO_BODY(x) ((x - (20.4167/2.0)) * 14.2917 / 20.4167)

// Now a conversion function to convert B/B_x to feet (max diameter 1.667 ft)

// Note these values will be the same for hh and bb since SUBOFF is a cylinder

#define B_BX_TO_FEET(y) (y * 1.16667)

 double xx [cross_sections] = {

 STATION_TO_BODY(0.0),

72

 STATION_TO_BODY(0.1),

 STATION_TO_BODY(0.2),

 STATION_TO_BODY(0.3),

 STATION_TO_BODY(0.4),

 STATION_TO_BODY(0.5),

 STATION_TO_BODY(0.6),

 STATION_TO_BODY(0.7),

 STATION_TO_BODY(1.0),

 STATION_TO_BODY(2.0),

 STATION_TO_BODY(3.0),

 STATION_TO_BODY(4.0),

 STATION_TO_BODY(7.7143),

 STATION_TO_BODY(10.0),

 STATION_TO_BODY(15.1429),

 STATION_TO_BODY(16.0),

 STATION_TO_BODY(17.0),

 STATION_TO_BODY(18.0),

 STATION_TO_BODY(19.0),

 STATION_TO_BODY(20.0),

 STATION_TO_BODY(20.1),

 STATION_TO_BODY(20.2),

 STATION_TO_BODY(20.3),

 STATION_TO_BODY(20.4),

 STATION_TO_BODY(20.4167)

 };

 double hh [cross_sections] = {

 B_BX_TO_FEET(0.00000),

 B_BX_TO_FEET(0.29058),

 B_BX_TO_FEET(0.39396),

 B_BX_TO_FEET(0.46600),

 B_BX_TO_FEET(0.52147),

 B_BX_TO_FEET(0.56627),

 B_BX_TO_FEET(0.60352),

 B_BX_TO_FEET(0.63514),

 B_BX_TO_FEET(0.70744),

73

 B_BX_TO_FEET(0.84713),

 B_BX_TO_FEET(0.94066),

 B_BX_TO_FEET(0.99282),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(0.97598),

 B_BX_TO_FEET(0.81910),

 B_BX_TO_FEET(0.55025),

 B_BX_TO_FEET(0.26835),

 B_BX_TO_FEET(0.11724),

 B_BX_TO_FEET(0.11243),

 B_BX_TO_FEET(0.10074),

 B_BX_TO_FEET(0.07920),

 B_BX_TO_FEET(0.03178),

 B_BX_TO_FEET(0.00000)

 };

 double bb [cross_sections] = {

 B_BX_TO_FEET(0.00000),

 B_BX_TO_FEET(0.29058),

 B_BX_TO_FEET(0.39396),

 B_BX_TO_FEET(0.46600),

 B_BX_TO_FEET(0.52147),

 B_BX_TO_FEET(0.56627),

 B_BX_TO_FEET(0.60352),

 B_BX_TO_FEET(0.63514),

 B_BX_TO_FEET(0.70744),

 B_BX_TO_FEET(0.84713),

 B_BX_TO_FEET(0.94066),

 B_BX_TO_FEET(0.99282),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(1.00000),

 B_BX_TO_FEET(0.97598),

 B_BX_TO_FEET(0.81910),

74

 B_BX_TO_FEET(0.55025),

 B_BX_TO_FEET(0.26835),

 B_BX_TO_FEET(0.11724),

 B_BX_TO_FEET(0.11243),

 B_BX_TO_FEET(0.10074),

 B_BX_TO_FEET(0.07920),

 B_BX_TO_FEET(0.03178),

 B_BX_TO_FEET(0.00000)

 };

#undef STATION_TO_BODY(x)

#undef B_BX_TO_FEET(y)

//--//

#endif // UUVMODEL_H

75

APPENDIX C - OBTAINING NPSNET SOURCE CODE

The NPSNET Email Addresses

For general code questions, concerns, comments, requests for distributions and documen-
tation, and bug reports, email npsnet@cs.nps.navy.mil.

To contact principal investigators, receive overall research project information and fund-
ing, or request demonstrations, email npsnet-info@cs.nps.navy.mil.

Anonymous FTP Archives

A number of sites maintain archives of documents and software that are generally avail-
able. The procedure is to FTP to these sites, using the name "anonymous" with a password
of "guest" or your email address, as prompted. The following sites are known to us to have
information relevant to NPSNET, computer graphics, or VR.

Site Host Directory Notes

NPS cs.nps.navy.mil pub/barham Retrieve README for instructions on obtaining
NPSNET.

SGI sgigate.sgi.com pub/Performer Performer stuff.

ISI ftp.isi.edu mbone faq.txt is the MBONE FAQ.

IST tiig.ist.ucf.edu public DIS stuff.

XEROX-PARC parcftp.xerox.com pub/net-research Multicast software for the
MBONE; MBONE maps.

World-Wide Web

The WWW is a collection of sites that make information available through use of browsers
like Mosaic or Netscape. Following are the sites we know of that have information relevant
to NPSNET, computer graphics, or VR.

The NPSNET Research Group home page

URL: ftp://cs.nps.navy.mil/pub/NPSNET_MOSAIC/npsnet_mosaic.html

76

Notes: Relevant NPSNET documents, including papers and theses produced at

NPS, which are available for downloading.

NPSNET Distribution Information

URL: http://cs.nps.navy.mil/research/npsnet/distribution/page.html

Notes: Info on NPSNET distribution and documentation

77

LIST OF REFERENCES

Barham, Paul T., Zyda, Michael J., Pratt, David R., Locke, John, Falby, John,
"NPSNET-IV: A DIS-Compatible, Object-Oriented Software Architecture for Vir-
tual Environments", unpublished paper, Naval Postgraduate School, Monterey,
California October 1994.

Brutzman, Donald P.,A Virtual World for an Autonomous Underwater Vehicle,
Dissertation, Naval Postgraduate School, Monterey, California March 1994. Avail-
able at http://www.stl.nps.navy.mil/~brutzman/dissertation

Covington, James H., "Implementing an Open Ocean Theater in NPSNET", Mas-
ter’s Thesis, Naval Postgraduate School, Monterey, California March 1994. Avail-
able at http://www.nps.navy.mil/res...ications/covington.thesis.ps.Z

Dalton, John H., Secretary of the Navy, "Forward...From the Sea", Doctrine Policy
Paper, September 1994.

Healey, Antony J., "Dynamics of Marine Vehicles", Naval Postgraduate School,
Monterey, California unpublished course notes 1993.

Hearn, John H., "NPSNET: Physically Based, Autonomous, Naval Surface Agents",
Master’s Thesis, Naval Postgraduate School, Monterey, California September
1993.

Jurewicz, T., "A Real Time Autonomous Underwater Vehicle Dynamic Simulator",
Master’s Thesis, Naval Postgraduate School, Monterey, California June 1989.

McMahan, Christopher B., "NPSNET-IV: An Object-Oriented Interface for a
Three-Dimensional Virtual World", Master’s Thesis, Naval Postgraduate School,
Monterey, California December 1994.

Nobles, Joesph and Garrova, James, "Virtual Shipboard Navigational Trainner"
Master’s Thesis, Naval Postgraduate School, Monterey, California June 1995.

Roddy, Robert F., "Investigation of the Stability and Control Characteristics of Sev-
eral Configurations of the DARPA SUBOFF Model (DTRC MODEL 5470) from
Captive-Model Experiments", Ship Hydromechanics Departmental Report DTRC/
SHD-1298-08, David Taylor Research Center, Bethesda< Maryland Septmeber
1990.

78

Sharpe, Richard,Jane’s Fighting Ships, Jane’s Information Group Ltd., Alexan-
dria, Virginia 1993.

Schmidt, Dennis A., "NPSNET: A Graphical Based Expert System To Model P-3
Aircraft Interaction With Submarines and Ships", Master’s Thesis, Naval Postgrad-
uate School, Monterey, California June 1993.

Schneiderman, Ben,Designing The User Interface: Strategies For Effective Hu-
man-Computer Interaction, Addison-Wesley, Reading, Massachustes 1992.

Sulivan, J., Frost, D.,U.S. Military Simulation and Training Markets, Comercial
Survey, Frost & Sullivan, Mountain View, California January 1993.

Young, Roy D., "NPSNET: A Real-Time 3D Interactive Virtual World", Master’s
Thesis, Naval Postgraduate School, Monterey, California September 1993.

Zehner, Stanley N., "Modeling and Simulation Of A Deep Submergence Rescue Ve-
hicle (DSRV) And Its Networked Application", Master’s Thesis, Naval Postgraduate
School, Monterey, California June 1993.

Zeswitz, S. R., "NPSNET: Integration of Distributed Interactive Simulation (DIS)
Protocol for Communication Architecture and Information Interchange", Master’s
Thesis, Naval Postgraduate School, Monterey, California September 1993. Avail-
able at http://www.nps.navy.mil/res...ications/Steve.Zeswitz.thesis.ps.Z

Zyda, Michael J., Jurewicz, Thomas A., Floyd, Charles A., and McGhee, Robert B.,
"Physically Based Modeling of Rigid Body Motion in a Real-Time Graphical Sim-
ulator", unpublished paper, Naval Postgraduate School, Monterey, California Sep-
tember 1991.

Zyda, Michael J., Pratt, David R.,Kelleher, Kristen M.,1994 Annual Report for the
NPSNET Research Group, Naval Postgraduate School, Monterey, California 1994.
Available at http://www.nps.navy.mil/re...994.NPSNET.Annual.Report.ps.Z

79

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center . 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library . 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

3. Dr Ted Lewis, Chairman, Code CS . 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Dr Michael Zyda, Code CS/ZY. 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Dr Donald Brutzman, Code UW/BR . 1
 Undersea Warfare Department
Naval Postgraduate School
Monterey, CA 93943

6. Mr John Falby, Code CS CS/FA . 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

7. Lt Daniel K. Bacon. 1
12430 Rue Cheaumont
San Diego,CA 92131

